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Abstract—The run-time electromagnetic (EM) emanation of
microprocessors presents a side-channel that leaks the confi-
dentiality of the applications running on them. Many recent
works have demonstrated successful attacks leveraging such side-
channels to extract the confidentiality of diverse applications,
such as the key of cryptographic algorithms and the hyperpa-
rameter of neural network models. This paper proposes ShuffleV,
a microarchitecture defense strategy against EM Side-Channel
Attacks (SCAs). ShuffleV adopts the moving target defense
(MTD) philosophy, by integrating hardware units to randomly
shuffle the execution order of program instructions and optionally
insert dummy instructions, to nullify the statistical observation
by attackers across repetitive runs. We build ShuffleV on the
open-source RISC-V core and provide six design options, to suit
different application scenarios. To enable rapid evaluation, we
develop a ShuffleV simulator that can help users to (1) simulate
the performance overhead for each design option and (2) generate
an execution trace to validate the randomness of execution on
their workload. We implement ShuffleV on a Xilinx PYNQ-Z2
FPGA and validate its performance with two representative vic-
tim applications against EM SCAs, AES encryption, and neural
network inference. The experimental results demonstrate that
ShuffleV can provide automatic protection for these applications,
without any user intervention or software modification.

Index Terms—Side-Channel, Defense, Microarchitecture,
RISC-V

I. INTRODUCTION

Modern appliances and everyday objects increasingly rely
on embedded microprocessors to execute software, advancing
their functionality. However, the run-time electronic character-
istics of microprocessors, such as the power trace or EM em-
anation, present side-channels that can be leveraged to extract
the confidentiality of applications. Since the demonstration of a
successful side-channel attack (SCA) retrieving the encryption
key of the Data Encryption Standard (DES) in [1], [2], many
research efforts have been devoted to attack various crypto-
graphic algorithms (e.g., the Advanced Encryption Standard
(AES) [3], [4]) and develop countermeasures accordingly.

In recent years, more edge (e.g., smart home and IoT
devices) processors have become capable of running high-
performance neural network models. In this way, the model
inference can be performed locally with high efficiency.
Although promising, these emerging systems also create a
new attack surface, where an adversary can illegally extract
(i.e., using side-channel analysis) the confidentiality of a
neural network model. Recent works by Batina et al. [5] and

Takatoi et al. [6] demonstrated successful reverse engineering
attacks using side-channels to extract the neural network model
architecture and weights from the microprocessors. Since
producing a high-performance neural network model demands
a large number of labeled data and substantial computational
resources, such model architecture and parameters should be
treated as the confidentiality of the model owner and well
protected. Moreover, acquiring the model architecture and
parameters can also aid the attacker in conducting adversarial
attacks [7] or deducing training data from the parameters [8].
These emerging attacks raise a new side-channel vulnerability,
as the current trend is to reduce latency and power consump-
tion while promoting user privacy by moving inference from
the cloud to the edge processors, which makes these systems
more susceptible to these side-channel-aided attacks.

Although various countermeasures have been developed for
cryptographic encryption standards [9], [10] and neural net-
works [11]–[14], they have different limitations. For example,
software-oriented solutions are easy to deploy in a micro-
processor but introduce high performance overhead. On the
other hand, hardware-oriented defense techniques are usually
targeted customized circuit (i.e., ASIC) and are not applicable
to protect general microprocessors. More importantly, most
of these existing countermeasures are application-driven e.g.,
only for securing the encryption key of AES, significantly
limiting their applicability. In contrast, microarchitectural-level
defense is a promising direction that can automatically safe-
guard any software executing on a processor without additional
efforts from developers or any code modifications.

To embrace these advantages of architectural defense, this
paper proposes ShuffleV, a microarchitectural defense strategy
against EM SCAs. ShuffleV adopts the moving target defense
(MTD) philosophy at the architectural level. Specifically,
ShuffleV integrates hardware units to randomly shuffle the
execution order of program instructions and randomly insert
dummy instructions to prevent adversaries from using the
statistical information for side-channel analysis. As a result,
ShuffleV can provide automatic protection against EM SCAs.

To ensure our findings are reproducible and broadly appli-
cable to real-world systems, we build ShuffleV on the open-
source RISC-V core and evaluate its performance on a Xilinx
XUP PYNQ-Z2 FPGA board. Specifically, we extend the
Ibex RISC-V core [15], an in-order, single-issue core with 2



pipeline stage. Being fully compatible with the original Ibex
core interface-wise, ShuffleV can also be used as an drop-in
replacement core in the OpenTitan SoC [16] and several SoC
in the PULP platforms [17] like PULPissimo, PULPino, and
OpenPULP.

We make the following contributions in this work.

• We propose ShuffleV, a side-channel resistant RISC-
V core which integrates hardware units to randomize
instruction execution order of any program to thwart
EM SCAs without developer intervention or software
modification.

• We implement ShuffleV on FPGA and evaluate its per-
formance with diverse workloads, including CoreMark
benchmark [18], AES-128 encryption [19], and neural
network inference on TensorFlow Lite Micro [20]. To
the best of our knowledge, this is the first work dis-
cussing countermeasures on a general-purpose processor
that include performance and security analysis for neural
network workload.

• We perform correlation electromagnetic attacks (CEMA)
with two representative victim applications, AES and
neural network, to evaluate the security performance of
ShuffleV. For a fair comparison, we establish baseline
references using the well-established open-source RISC-
V core Ibex [15] and its security-enhanced version Secure
Ibex1. The experimental results demonstrate the effective-
ness of ShuffleV in securing these two workloads.

• We implement ShuffleV2 as an drop-in replacement to
the open-source Ibex core, which enables our method to
be used in many existing SoC design in the PULP and
OpenTitan project that is compatible with the Ibex core.

• We equip ShuffleV with 6 design options to suit different
design objectives. To facilitate fast performance emula-
tion, we develop a ShuffleV simulator3 to simulate the
performance overhead and estimate the security enhance-
ment on each workload.

II. BACKGROUND AND RELATED WORKS

A. Side-channel Attack Overview

Side-channel attack (or SCA) is a type of advanced attack
threatening a wide range of systems, including but not limited
to cryptosystems. Unlike traditional attacks that exploit the
deficiency of software programs, SCA focuses on passively
observe, collect, and analyze the information gleaned from
the physical components during the system execution, from
which the attacker can indirectly divulge information about the
victim applications. The representative side-channels include
the power trace [1], EM emanation [5], [6], and timing
information [21].

1We refer to the Ibex core with dummy instruction insertion feature enabled
as Secure Ibex in this paper.

2ShuffleV core is open-source and available at https://github.com/nuntipat/
ShuffleV-Demo-System.

3ShuffleV simulator is open-source and available at https://github.com/
nuntipat/ShuffleV-Simulator.

Correlation Electromagnetic Attack (CEMA) is a specific
variant of SCA that studies the correlation between the EM
emanation of a victim device and the data it processes, to
extract secret information. CEMA necessitates collecting and
statistically analyzing a large set of EM traces from the device
under test (DUT). The initial step in this process is to create
an appropriate EM model that reflects a certain part of the
DUT, i.e., a module like a register that retains intermediate
computational values reliant on the secret. Following this, a
temporal correlation is identified within the EM trace at when
the register updates with the intermediate computational value.
The predicted EM values from the model are then cross-
referenced with the actual EM traces. Given that the secret
within the EM model is unknown, all potential secret values
are evaluated through hypothesis testing. The accurate value is
the one that yields the highest correlation between the model
predictions and the actual measurements.

CEMA has been proven effective in retrieving secrets from
microprocessors, such as the cryptographic key of the Ad-
vanced Encryption Standard (AES) [22], a long-term victim
example in side-channel research. More recently, EM SCAs
are also used in reverse engineering the confidentiality of
neural network models from microprocessors [5], [6], i.e., to
extract the neural network architectures and weights.

B. Defense against SCAs

In recent years, various defenses against Side-Channel At-
tacks (SCAs) have been proposed. Initially driven by attacks
on cryptographic algorithms, most existing defenses are de-
signed to secure implementations of ciphers like AES by
protecting sensitive information such as cryptographic keys.
Following the successful application of side-channel analysis
to reverse-engineer neural network models, several defenses
have also emerged to protect Deep Neural Network (DNN)
model architectures and weights.

Many defenses have been developed for both hardware
and software implementations of cryptographic algorithms. On
the software side, a notable work is Rosita [9], a program
rewriting engine that automatically protects masked AES
implementations based on the input of a leakage emulator.
For hardware, Bilgin et al. [23], [24] and De Cnudde et
al. [25] proposed secure hardware implementations based on
Threshold Implementations (TI) [26], securing against first-
order and second-order power analysis attacks, respectively.
Building on this, Gross et al. [27] introduced Domain-Oriented
Masking (DOM), a technique offering comparable security to
TI with reduced chip area and fewer random bits.

For neural network workloads, Liu et al. [13] proposed
obfuscating memory access patterns by shuffling NN weight
memory accesses and adding dummy access signals. Luo et al.
[14] presented more advanced scheduling obfuscation methods
to protect against DNN architecture reverse engineering on
FPGA-based DNN accelerators. Beyond shuffling, masking
techniques have been explored by Dubey et al. [11], [12]
to protect linear and nonlinear operations in hardware neural
network implementations. Their results indicated an overhead



of 3.5% in latency and a 5.9x increase in area on a Xilinx
Spartan-6 FPGA.

In addition to application-specific defenses, another line
of work focuses on developing generalized defense strate-
gies to mitigate side channels for diverse applications at the
microarchitecture level, using techniques such as shuffling,
code morphing, and masking. Bayrak et al. [28] utilized a
customized hardware unit to randomize the execution order
of independent instruction blocks, which are either manually
defined by the developer or detected during compile time using
their proposed toolchain. Antognazza et al. [29] proposed
Metis, an integrated hardware module for transparent code
morphing at the microarchitecture level, replacing each target
instruction with several equivalent instructions. While their
approach significantly reduced execution time overhead by 21-
141x compared to software-based continuous code morphing,
their AES-128 encryption execution time remained 1.8 to 2.35
times slower than that of an unprotected core. Gross et al. [30]
employed the DOM technique to protect the register file, ALU,
and data memory interface of the V-scale RISC-V processor.
The evaluation results showed that their design secured the
Authenticated Encryption Scheme (ASCON) [31] against first-
order attacks, although with a 1.59x increase in LUTs and a
1.84x increase in registers on a Xilinx Spartan-6 FPGA.

ShuffleV falls into this category of generalized defenses.
It proposes integrating hardware units to randomize the in-
struction execution order of any program to thwart EM SCAs
without requiring developer intervention or software modifica-
tion. Our approach improves upon [28] by eliminating the need
for source code modification or recompilation with a custom
compiler toolchain. Compared to [29], our instruction shuffling
approach incurs significantly less execution time overhead
because it creates execution randomness by permuting actual
program instructions, rather than performing code morphing,
which expands one instruction into several to obfuscate the
actual computation.

III. THREAT MODEL, SETUP, AND BASELINE

A. Threat Model
This work focuses on microcontrollers and small embedded

processors used in embedded and edge IoT devices, which are
directly accessible to users and attackers. We take the EM side
channel attack as case study, for the following reasons:

• Single-tenant: These types of systems run bare-metal
software or real-time operating systems (RTOS), such
as [32], [33], which contain only trusted manufacturer
firmware. Therefore, we can eliminate common attacks
in PC, mobile, and cloud environments based on cache,
timing, branch predictors, and other microarchitecture
side-channels that are launched by side loading malicious
software onto the device, such as [21], [34], [35].

• Location: These types of system are wildly deployed on
the edge and can be easily disassembled and probed.
Thus, they are more vulnerable to physical SCAs.

• Non-invasive: EM is one of the most feasible and appli-
cable attacks in real-world scenarios, as it doesn’t require

physical modifications to the printed circuit board (such
as removing the capacitor or cutting the power trace),
unlike power side-channel attacks. It also doesn’t cause
irreversible damage to the target device like other invasive
attacks, e.g., voltage/clock glitching, and laser injection.

We assume that the attacker has physical access to the
device to measure the EM emanation and can send in the
input and read the result of the computation from the device.

B. Experimental Setup

Our experimental setup is shown in Fig. 1, which consists
of a Xilinx XUP PYNQ-Z2 [36] FPGA board equipped with
a ZYNQ XC7Z020-1CLG400C System-on-Chip (SoC). All
hardware designs are synthesized using the Xilinx Vivado
Design Suite 2023.1 and run at 50 MHz. We employ Tektronix
MSO44 4-BW-1000 mixed signal oscilloscope [37], Langer
RF-B 0.3-3 H-field EM probe [38], and Langer PA 303
Preamplifier [39] to collect the EM side-channel leakage from
the FPGA chip.

We consider two representative workloads: an AES-128
encryption (key = 16 Byte) and a

∑5
i=1 ini × wi (5i5w)

Multiply Accumulator (MAC) operation, where in represents
the input data from the user, w is the weight parameter, and i
denotes the ith input/weight. Following [5], [6], we select the
MAC operation to represent the neural network workload, as
it is the core operation that formulates the convolutional and
fully connected layers, the core building blocks of the neural
network models. To ensure fairness, one million random input
samples are pre-generated for each workload and consistently
used during EM trace collection across all core configurations.

To perform the attack, we feed each pre-generated input and
collect one EM trace per input. The optimal position of the
EM probe is determined by continuously running the target
application and moving the probe in a grid pattern to find the
location that yields the highest signal amplitude at the system’s
operating frequency. The length of each trace varies depending
on the specific workload and the actual execution time of
each run, as illustrated in Fig. 2. To simulate a highly capable
attacker and evaluate each defense mechanism under a worst-
case scenario, a trigger signal is added into the code to indicate
the start and stop of computation, enabling synchronized EM
measurements. The underlying idea is that if an attack proves
unsuccessful under these ideal conditions, its likelihood of
success in a real-world environment where misalignment and
measurement noise are increased is significantly diminished.

C. Baseline Characterization

Baseline Setup. We use Ibex [15], an open-source RISC-V
core, and its enhanced version Secure Ibex [15] as our base-
line. The Ibex core is chosen as it is designed specifically for
embedded control applications and is equipped with various
security features, such as register file error correcting code
(ECC), cache ECC, dummy instruction insertion, and data-
independent timing to defend against fault injection attacks as
well as timing, power, and EM-based side channel leakages.
More importantly, the Ibex core is widely adopted as a key



TABLE I: The number of EM traces required to extract AES-128’s key on the targeted core configuration.

Config
Byte# 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

Ibex [15] 300 300 400 150 400 200 100 100 150 250 250 250 1050 100 450 450
Secure Ibex [15] 80k 51k 93k 31k 53k 43k 18k 10k 10k 13k 13k 10k 12k 3k 14k 1k

Fig. 1: Our setup for performing EM measurements.

TABLE II: The number of EM traces required to extract the
5i5w MAC weights on the targeted core configuration. *1The
attack was performed on weights 1 and 2 simultaneously.

Config
Weight (i) 1 2 3 4 5

Ibex [15] 270 170 300 150 670
Secure Ibex [15] 37k*1 37k 10k 14k 36k

component in the PULP [17] and OpenTitan [16] platforms
and is one of the most popular open-source RISC-V cores on
GitHub, with over 1,100 stars. To evaluate these cores, we uti-
lize the Ibex demo system [40], which provides debug support
and some necessary peripherals in its default configuration.

The Secure Ibex core is equipped with a dummy instruction
insertion mechanism to enhance security by randomly adding
one dummy instruction every few actual instructions. We
enable this mechanism (by asserting the dummy_instr_en
control bit in the cpuctrl register) and set the dummy instruc-
tion interval (DII) to 16 to insert dummy instructions every
0–16 real instructions. Four types of instruction are used as
dummy instructions, each requiring a different number of CPU
cycles: ADD (1 cycle), AND (1 cycle), MULT (2 cycles), and
DIV (37 cycles). These varying cycle counts play a role in
moving target of the victim applications, e.g., making it more
challenging to analyze side-channel traces from repetitive runs.

Attacking Ibex. We first conduct CEMA attacks using the
Hamming weight leakage model on the Ibex core [15]. We
show the experimental results in the 1st row of Tab. I and
II, from which we can observe that, the CEMA attack can
easily extract the secret from the Ibex core, i.e., only several
hundred traces are needed to extract the AES key and the
MAC weights.

Attacking Secure Ibex. Although the Secure Ibex presents
enhanced robustness against CEMA, we find it is still possible
to conduct a successful attack. We illustrate our attacking idea
in Fig. 2, which shows the distribution of program execution
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Fig. 2: Histogram of the length of EM traces collected from
the 5i5w MAC operation (top) and the AES-128 encryption
(bottom) programs run on the Secure Ibex core. Purple dashed
lines indicate the minimum and maximum lengths of traces
used for the attack.

time when capturing 5k, 10k, 50k, and 100k EM traces. We
can observe that, although the insertion of dummy instructions
corrupts the repetitive accumulation of side-channel features,
these EM traces can still be clustered into a small number
of groups, each following a normal distribution. Therefore,
by collecting only traces of comparable length, such as the
one between the two purple dashed lines, we can easily
gather a substantial quantity of aligned traces. From these
experiments, we found that 10k EM traces is sufficient to
build an accurate distribution. Following this, an additional
100k traces of comparable length are collected and CEMA
is executed to extract the secret from both AES and MAC
operation, as shown in the 2nd row of Tab. I and II.

Lessons Learned. Our experimental results in Tab. I and II
demonstrate that using a dummy instruction insertion mecha-
nism alone may not provide sufficient protection against EM
SCAs. Although Secure Ibex can insert instructions more
frequently to enhance security, e.g. every 8 or 4 program
instructions, doing so incurs significant performance penalties.
Fig. 3 illustrates this overhead by comparing the execution
time of the Secure Ibex core to the baseline Ibex core. For the
MAC and AES-128 workloads, Secure Ibex’s execution time
is, on average, 37% and 81% higher, respectively, when DII
is set to 16. This increases to 61% and 142% higher when
DII is set to 8. Another significant drawback of Secure Ibex
is its high execution time variation, which makes it unsuit-
able for real-time embedded systems that demand predictable
timing. To overcome these shortcomings, this paper proposes
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Fig. 3: Normalized execution time of the Secure Ibex with
dummy instruction interval (DII) = 8 and 16 compared to the
Ibex core on MAC and AES-128 workload (lower is better).

ShuffleV. Our method employs a nondeterministic instruction
shuffling technique to achieve superior resistance to EM SCAs,
significantly reducing execution time overhead to just 13.7%
for the MAC workload and 3.1% for the AES-128 workload,
all while demonstrating much lower execution time variation.

IV. SHUFFLEV: DESIGN OVERVIEW

To mitigate both security and performance concerns of
Secure Ibex, we propose a microarchitectural defense strat-
egy ShuffleV, which adopts the moving-target-defense (MTD)
philosophy. Following our baseline characterization in Sec.
III-C, we use the RISC-V ISA specifically the base integer
ISA (RV32I) to introduce ShuffleV. Nevertheless, the design is
directly applicable to other RISC-V ISA extensions described
in [41], e.g., compressed (RVC), multiply and divide (RVM),
atomic (RVA), single/double floating point (RVFD), etc., as
well as other ISAs such as ARM.

The general idea of ShuffleV can be described as follows:
as a MTD-based defense solution, it randomizes the execution
sequence of instructions. Particularly, instead of fetching and
executing each instruction one-by-one, ShuffleV fetches N
instructions to fill a hardware unit, shuffle buffer, which
stores the fetched instruction awaiting for execution in the
next step. Each entry in the instruction buffer contains a
program counter (PC) value, the machine instruction, a valid
bit, N dependency bits to indicate which other instructions
this instruction depends on, and the index of the physical
source and destination registers, as illustrated in Fig. 4. Then,
ShuffleV randomly selects one pending instruction from the
buffer to execute, and refills the buffer with new instructions
retrieved from the instruction memory or an instruction cache,
if available. Note that the shuffle buffer size is reconfigurable,
i.e., can be arbitrarily chosen. While a large buffer size helps to
improve execution randomness, it also incurs more hardware
and execution time overhead. In our experiments, we found
that a buffer size equal to 4 yields a good trade-off between
security and hardware overhead (see Sec. VI).

A. Instruction Dependency Tracking

Although the MTD philosophy is straightforward, its imple-
mentation is challenged by how to track data dependency
between instructions to maintain program correctness. In
an ideal scenario, there will be NM ways that a program
can be executed, where N is the size of the shuffle buffer
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Fig. 4: ShuffleV’s high level diagram of the instruction fetch
and shuffle process.

and M is the number of CPU cycles required to execute the
program, with no performance penalty aside from the larger
hardware footprint for the shuffle buffer and the auxiliary
logic. In practice, however, not all instructions can be selected
for execution in each cycle, due to data dependency between
instructions. As a result, the number of unique permutations
of the program instructions will be lower than NM , as shown
in Fig. 14. Moreover, control flow statements such as branch
or jump also prevent the core from fetching new instructions,
while waiting for the branch or jump to execute. Thus, the
processor will need to stall for a few cycles after every
branch or jump to refill the shuffle buffer, negating the overall
performance of the processor, as shown in Fig. 6.

In RISC-V, all instructions perform computation on the
register with one destination register and two source registers,
except a few instructions in RVF and RVD extensions that have
three source operands. The RISC-V’s common instruction
format and addressing mode make it an ideal candidate for im-
plementing our instruction shuffling strategy. Leveraging this
feature, ShuffleV checks whether the next instruction depends
on any previous instruction, by comparing the next instruction
source register (rs1, rs2, and rs3) with destination registers
(rd) of all pending instructions. This simple strategy covers
most instructions in the RISC-V ISA, except the load/store,
synchronization, environment, and control status register in-
structions, which require special attention.

One critical optimization to maximize the “shufflability” of
the instruction stream is to eliminate artificial dependencies,
e.g., the Write-After-Write (WAW) and the Write-After-Read
(WAR). These dependencies are caused by the limited number
of logical registers in the ISAs, which enforces the compiler
to reuse the registers during code generation. In the following
example, all instructions need to be executed sequentially as
there is a true data dependency between the “LW and SUB”
instructions and the “AND and OR” instructions. Also, the LW
and AND instructions exhibit a WAW dependency, and the SUB
and AND instructions exhibit a WAR dependency. However, the
AND and OR instructions are actually independent from the LW
and SUB instructions thus could be executed before the first
two instructions.

LW R1, 4(R1) // R1 = MEM[R1 + 4]
SUB R3, R1, R2 // R3 = R1 − R2
AND R1, R4, R5 // R1 = R4 & R5
OR R7, R1, R8 // R7 = R1 | R8

We adopt register renaming, a technique widely used in



super-scalar and out-of-order processor design, to address
these artificial dependencies (WAW and WAR). The idea is to
have more physical registers in the hardware than the number
of registers in the ISAs (i.e., logical registers) and reserve
new physical registers to be used as destination registers for
every instruction that writes to the register file. The current
mapping between logical and physical registers is maintained
in the renaming unit. The corresponding physical registers for
all source and destination registers of all pending instructions
are recorded in the corresponding fields in the shuffle buffer.
These data are needed to determine unused physical registers,
i.e., registers that are not referred to in the logical-to-physical
mapping table or in any valid entry in the shuffle buffer.

We use the following example to illustrate the effectiveness
of register renaming, where Xn denotes physical registers and
Rn denotes logical registers. Assigning R1 to X6 in the LW
and SUB instructions and to X8 in the AND and OR instructions
yields greater flexibility, regarding the execution order of these
instructions. The AND instruction can be moved prior to the
LW or SUB instruction, or alternatively, the SUB instruction
can be moved subsequent to the AND or OR instruction.

LW X6, 4(X1) // Initial allocation
SUB X7, X6, X2 // X1=R1 X2=R2 X3=R4
AND X8, X3, X4 // X4=R5 X5=R8
OR X9, X8, X5

Next, we explore other instructions that require special con-
sideration, apart from verifying source/destination registers.

Load and Store4. The load and store instructions can have
an implicit dependency on each other, as the target address is
calculated by the value of the register plus an integer offset,
which is not known at the instruction fetching stage, until
all prior instructions that write to that specific register have
been executed. The simplest method is to assume that every
load and store depends on all prior loads and stores, which
is trivial to implement with low hardware overhead but could
incur large run-time overhead. One exception is when there
are multiple load instructions in the shuffle buffer without
any store instruction. In this case, we can allow these load
instructions to be executed in any particular order, given that
they don’t depend on other instructions in the shuffle buffer.

More challenging, a dependency can exist between “load
and store” and “store and store” instructions. For instance,
the SW instruction in the following code example can’t be
executed before the first LW instruction, as R1 will contain
an incorrect value if R2+4 equals R4. However, the last LW
instruction can be executed anytime since we can ensure that
the SW instruction will write to a different memory location
(R4 ̸= R4+4). Therefore, we can conclude that a dependency
exists between a pair of load and/or store instructions when
their base register is different, as the register value is not
known. When the base register is identical, the offset must
be compared depending on whether the instruction worked on
a byte (LB, SB), a half-word (LH, SH), or a word (LW, SW).

4To support memory-mapped I/O, load and store optimization can be
disabled during core configuration or temporarily via the Control and Status
Registers (CSR) as described in Sec. V
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LW R1, 4(R2) // R1 = Mem[R2+4]
SW R3, 0(R4) // Mem[R4] = R3
LW R5, 4(R4) // R5 = Mem[R4+4]

Other Instructions. We also need to ensure that synchro-
nization instructions (FENCE(.I)), environment instructions
(ECALL and EBREAK) and control status register instructions
(CSR) are not shuffled around, since they can affect run-
time behavior and debugging. To achieve this goal, we set
a dependency-bit to cascade these instructions, i.e., these
instructions will depend on all prior instructions, and their
subsequent instructions will depend on them.

B. Instruction Selection

After filling the instruction buffer, the next step is to pick
one ready instruction from the instruction buffer to execute.
Although the task appears simple initially, creating random
numbers within a certain range and excluding those that
correspond to indexes of invalid instructions is not trivial.
To solve this problem without introducing extra overhead,
ShuffleV employs a rule: it selects the closest ready instruction
from the random index. For example, if the random number is
1, we will choose the first valid instruction at index 1, 2 (+1),
0 (-1), 3 (+2), and 4 (-2) in order. Fig. 5 describes how this
logic can be implemented in hardware in three steps. (1) We
pre-compute the index sort by the distance for each possible
random number (0 to N − 1) and store them in a table called
D-Table. (2) We load one column of the D-Table depending
on the generated random number and get the valid bit from
the corresponding index in the shuffle buffer, as illustrated by
the blue arrows in Fig. 5. (3) The priority encoder can be used
to find the index of the first ’1’, which will be used to index a
row in the selected D-box column to get the instruction index.

C. Performance Optimization

As a MTD-based defense, the security performance of
ShuffleV lies in its shuffling capability, i.e., the randomness of
instruction execution. To maximize this, the instruction buffer
must be kept full at every cycle that the processor selects
an instruction for execution. One exception is in the simplest
design without any speculative fetch, where we temporarily
allow the instruction buffer to be partially filled when waiting
for the control flow instruction (branch or jump) to be executed
(see cycle #3-4 in Fig. 6). The drawback is that it requires the
core to stall for 0-N cycles to refill the instruction buffer after
executing each control flow instruction (see cycle #5-7 in Fig.
6). The number of stall cycles depends on how long the control
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Fig. 6: State of the shuffle buffer during execution without
speculative fetch. Instructions highlighted in red are to be
removed and executed. Instructions highlighted in green are
newly fetched. The ready bit indicates that the entry is valid
and is not depend on any other instruction.

flow instruction stays in the shuffle buffer, as the core won’t be
able to fetch the next instruction while waiting for this control
flow instruction to be executed.

To further improve the performance of ShuffleV, we propose
the following three approaches to reduce the stall cycle after
each control flow instruction:

1 Speculative fetch. One effective approach to eliminat-
ing stalls after each control flow instruction is to perform
speculative fetch, by implementing branch prediction and/or
return address stack. A simple implementation is to perform
speculative fetch and mark the entry as prefetch, as shown in
Fig. 7. When the branch or jump is executed, we can either de-
assert the prefetch flag to turn the entry into a valid entry and
continue execution (see cycle #5 in Fig. 7), or clear all prefetch
entries and stall to refill the buffer, depending on whether we
predict the target address correctly or not.

2 Speculative execution. Following the first approach, we
can execute all prefetch instructions as if they were valid
entries. To achieve this, a checkpoint is created in the same
cycle that the branch or jump instruction is added to the
shuffle buffer. It stores the current state of the shuffle buffer,
the current physical register value, and the current mapping
from logical to physical register. If the branch or jump target
address is correctly predicted, the checkpoint is discarded and
the execution can proceed without any overhead. However,
if the target address is incorrectly predicted, we need to
restore from the checkpoint and fetch the correct instruction
to replace the branch or jump instruction. This approach
maximizes instruction sequence randomness in exchange for
higher hardware resources for the checkpoint logic.

Before creating the checkpoint, we must ensure that there
are no dependent load and store instructions in the shuffle
buffer, as the load instruction may retrieve an incorrect value
from memory, if the subsequent store instruction was already
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Fig. 7: State of the shuffle buffer during execution with
speculative fetch enabled (R=“Ready” and P=“Prefetch”). In-
structions highlighted in red are to be removed and executed.
Instructions highlighted in green are newly fetched.

executed before the rollback to the checkpoint. We illustrate
this issue in Fig. 8, where the checkpoint is created in cycle
#2, and the LW and SW instructions are executed in cycles #3
and #4, respectively. Then, in cycle #5, the branch instruction
is executed, resulting in a rollback of the core due to a branch
mis-prediction. Later in cycle #7, the LW instruction executes
again and returns an incorrect value, as the succeeding store
has already committed to memory.

Also, during execution with an active checkpoint, it is
crucial to prevent executing instructions that cannot be rolled
back, such as syscalls that writes to I/O, etc. This can
be achieved by setting the dependency bit of the relevant
instructions to the branch or jump instruction. Alternately, we
could adopt the load store queue and re-order buffer [42],
a hardware unit commonly used in out-of-order processor
design, to commit the result of executed instructions in order
and enable revert to previous checkpoints. However, doing
so restricts the number of CPU cycles an instruction can be
shuffled from its initial position. Additionally, committing the
results sequentially may increase side-channel leakage.

3 Modified instruction selection algorithm. Beside intro-
ducing additional hardware for speculative fetch or execution,
we can amend the instruction selection module to select
the pending branch or jump instruction as soon as it is
ready. Therefore, reducing the amount of entry in the in-
struction buffer that need to be refilled. This method incurs
low hardware overhead, but might reduce the randomness
of the instruction sequence. Practically, this approach can be
combined with the first and second approaches to shorten the
speculative fetch and execution duration, thus reducing the
rollback penalty when the prediction is incorrect.

D. Additional security feature

To further enhance the execution randomness, ShuffleV also
supports inserting dummy instructions by randomly selecting
one ALU operation and sending the dummy instruction to the
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Fig. 8: An example demonstrating the problem with executing
dependent load and store instructions during the checkpoint
period. LW and SW are executed in cycles 3 and 4, respectively.

decode/execution stage, for every 0-4, 0-8, or 0-16 instruc-
tions. The main difference between ShuffleV and the Secure
Ibex [15] is the choice of dummy instructions, ShuffleV uses
ADD, AND, MUL, and MULH instead of ADD, AND, MUL, and
DIV. The DIV instruction stalls the processor for 37 cycles
and is key to the dummy instruction insertion in the Secure
Ibex core (which we successfully attacked in Sec. III-C).
Since ShuffleV only utilizes dummy as an additional defensive
measure, it can avoid using DIV instruction to significantly
reduce overhead as shown in Fig. 11.

V. SHUFFLEV: IMPLEMENTATION

A. Design Options

We develop ShuffleV with the following design options, to
suit different application scenarios, as well as providing trade-
off between security and performance overhead.

• Optimized memory (M): this option allows dependencies
between load and store to be determined using the logic in
Sec. IV-A. Otherwise, the core assumes that all load/store
instructions depend on all prior load/store instructions.

• Decode jump instruction (J): this option avoids stalling
when encountering the JAL (jump and link) instruction
by adding logic to calculate the jump target immediately.

• Branch prediction (B): this option uses branch prediction
to reduce stall cycles. We allow only a single branch to
be predicted and one checkpoint to be created at a time,
to reduce the hardware overhead.

• Return address stack (R): this option enables the return
address stack to avoid stalling when encountering JALR
instruction.

• Multiple checkpoint (C): this option allows predicting
multiple branches and creating multiple checkpoints. It
must be specified in combination with the B option.

• Shortcut branch/jump evaluation (F): this option forces
the instruction selector to select the pending branch or
jump instruction as soon as it is ready.
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B. ShuffleV Simulator

To evaluate the performance and security of ShuffleV, we
develop ShuffleV simulator based on libriscv [43], an open-
source RISC-V userspace emulator library. ShuffleV simulator
supports executing any RISC-V binary on all ShuffleV config-
urations described in Sec. V-A. It provides detailed execution
traces, including internal state of the shuffle logic and reason
for each stall, allowing a user to validate the execution random-
ness and select the most appropriate ShuffleV configuration
based on expected workload and performance requirement.

C. Hardware Implementation

To streamline ShuffleV’s integration into existing designs,
we implemented it on the open-source and popular Ibex RISC-
V core [15], an in-order, single-issue core with two pipeline
stages. Ibex fully supports the base integer instruction set
(RV32I) and can be configured for compressed (RV32C),
multiplication and division (RV32M), and bit manipulation
(RV32B) extensions. Being interface-compatible with Ibex,
ShuffleV can serve as a drop-in replacement in the OpenTitan
SoC [16] and several PULP platform SoCs [17].

We chose to extend a simpler in-order core like Ibex over
a more complex superscalar out-of-order core for two main
reasons. First, this approach allows us to demonstrate the
generalizability of our method on a simple, less-expensive
core. Second, a more complex architecture would introduce
unnecessary components. Despite our modifications, the re-
sulting core is 3.5x smaller than state-of-the-art small out-of-
order RISC-V cores, such as [44]. A detailed comparison of
the resource utilization can be found in Appendix E.

Fig. 9 highlights the modifications made to the Ibex core.
First, the shuffle buffer is introduced alongside the dependency
tracking logic, the instruction selection logic, and the random
number generator (RNG). The Comp Decoder is moved in
front of the shuffle buffer, as our shuffling logic and the
ID/EX stage work with instructions in the uncompressed
form. Second, we expand the number of registers in the
register file to support register renaming and modify the
instruction decoder and corresponding data paths in the ID
stage to refer to the (renamed) physical registers instead of
the logic register specified in the machine code. Third, we
add a configuration bit in the Control and Status Registers
(CSR) to allow the software developer to enable/disable the



CoreMark Neural Network (TF Lite Micro) AES-128

Fig. 10: Performance overhead of different configuration of ShuffleV on the CoreMark benchmark (left), neural network
inference on TensorFlow Lite Micro (middle) and AES-128 encryption (right) with shuffle buffer size = 2 and 4

protection to reduce the performance overhead. Finally, we
adopt the systemc rng pseudo-random number generator from
OpenCores [45], which combines an LFSR with a CASR
based on [46]. Note that the design and evaluation of secure
RNGs suitable for FPGA and/or ASIC implementation is out
of the scope of this work.

Since our proposed modifications focus on the front-end
(i.e., the predict and instruction fetch stages), they are com-
patible with any single-cycle and pipeline RISC-V core. The
performance and security analysis of the implementation on
other RISC-V cores are left as future work.

VI. SHUFFLEV: EVALUATION

A. Performance Evaluation

Evaluation Benchmarks. We select three workloads to
evaluate ShuffleV, including the standard CPU benchmark
(CoreMarks), neural network inference (TF Lite Micro li-
brary), and cryptography encryption (AES-128). To demon-
strate compatibility with diverse neural network architectures,
we employ the ensemble model (Fig. 26 in Appendix D), a
small network that consists of all widely used layers and ac-
tivation function, such as fully connected, convolution, depth-
wise separable convolution, batch normalization, max pooling,
relu, and softmax layers.

Execution Time. We show the overhead of ShuffleV in Fig.
10, which is quantified in percent of extra (stall) cycles to
complete the benchmark program on different configurations
of ShuffleV with different buffer sizes. These extra cycles
result from the shuffle buffer needing to be refilled after certain
events. The causes of these stalls are as follows:

• Branch: it occurs when the core pauses fetching while
waiting for the branch instruction to be selected for
execution (only occurs when branch predictor is not
enabled or when multiple checkpoint are not allowed).

• Mem: it occurs when the core pauses fetching while
waiting for dependent load and/or store instructions to

be selected for execution before the checkpoint can be
created (only occurs when branch predictor is enabled).

• Jalr: it occurs when the core pauses fetching while wait-
ing for the JALR instruction to be selected for execution.

• HW Fault: this stall is caused by an exception from
a speculated instruction. In this case, the core pauses
fetching and reverts to the checkpoint.

• Discard: this stall is caused by a misprediction of the
branch predictor or the return address stack.

Compared to the baseline unsecured core (Ibex), on the
CoreMark benchmark, the execution time overhead ranges
from 1.78% to 13.95% and 11.91% to 34.6% when the shuffle
buffer size is equal to 2 and 4, respectively. On the neural
network workload, the execution time overhead ranges from
0.39% to 9.91% and 3.88% to 25.83% when the shuffle buffer
size is 2 and 4, respectively. On the AES encryption workload,
the execution time overhead ranges from 0.26% to 4.85% and
3.1% to 14.45% when the shuffle buffer size is equal to 2 and
4, respectively. The overhead when buffer size is equal to 8
is given in Fig. 21 in Appendix B. From our experiment, we
found that a buffer size of 4 is a optimal compromise between
performance and side-channel security (see Tab. V and VI).

In all workloads, branch instructions are the primary cause
of stalls, forcing the core to refill the shuffle buffer as described
in Fig. 6. Therefore, enabling branch prediction, such as with
the ‘B’ and/or ‘C’ option, is likely to result in lower overhead,
as shown in Fig. 10. The ShuffleV simulator and demo SoC
currently support four branch prediction algorithms: always
taken, always not taken, a static predictor based on branch
offset, and a two-bit predictor. From our experiments, static
branch prediction performs best for the CoreMark bench-
mark, achieving 82.00% accuracy. For neural network and
AES workloads, the two-bit branch predictor performs best,
achieving 85.06% and 71.27% accuracy, respectively. The
higher overhead observed in the AES-128 workload when the
‘B’ option is enabled is likely due to low branch prediction
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Fig. 11: Execution time overhead on AES-128 encryption on
ShuffleV compared with Rosita [9], Secure Ibex [15], and
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accuracy, leading to significant checkpoint restore overhead
(purple bar in Fig. 10). Additionally, the high number of
dependent memory access instructions in AES-128 prohibits
checkpoint creation when branch prediction is enabled (orange
bar in Fig. 10). Despite these factors, ShuffleV’s overall
overhead remains lower than existing work, as demonstrated
in Fig. 11. Note that determining the most accurate branch
predictor for each specific workload is beyond the scope of
this work, and interested readers are advised to refer to [47].

Fig. 11 compares the performance overhead of ShuffleV on
AES with SOTA works, including Secure Ibex with dummy
instructions [15], Metis [29], the most efficient RISC-V core
with code morphing engine, and Rosita [9], an automatic code
rewrite engine to protect the masked AES implementation.
We choose ShuffleV-F with buffer size equal to 4 for this
comparison as it is the configuration used to perform security
analysis in Sec. VI-D. When only shuffle is applied, the over-
head of ShuffleV is 3.1%, 4.87x less than application specific
protection (masked software implementation generated from
Rosita) and 21.67x–47.29x less than generalized processors
with built-in protection like Secure Ibex and Metis.

When both shuffle and dummy instructions are applied,
the overhead of ShuffleV is 2.06x more than Rosita and
2.15x–4.7x less than generalized processors with built-in pro-
tection like Secure Ibex and Metis. Therefore, the findings
indicate that the overhead of ShuffleV is comparable to the
application-specific defense like Rosita [9], while still being
universal and user-friendly, eliminating the need for manual
adjustments and software modifications.

To further demonstrate the scalability and compatibility
of ShuffleV on larger, real-world DNN architectures, Tab.
III presents the execution time overhead (in cycles) when
executing various models on ShuffleV-F (bs=4) compared
to the Ibex core. For all model architectures, we convert
predefined models from Keras [48] into TF Lite Micro format
and set the input shape to 224x224x3, a common standard
for RGB images in recent DNN literature. We include a
range of models, from MobileNetV2 with 1.69M parameters
(726 million CPU cycles) to ResNet50 with 25.61M param-
eters (23,045 million CPU cycles). Despite this significant

TABLE III: Execution time overhead of ShuffleV (bs=4)
compared to the Ibex core on real-world DNN architecture.

Model Architecture
Model Size #Extra CPU

Cycles#Params #CPU Cycles

MobileNetV2 (α=0.35) 1.69M 726M 10.16%±0.0018

MobileNetV2 (α=0.75) 2.66M 1,978M 9.68%±0.0018

EfficientNet B0 5.33M 4,175M 13.15%±0.0010

NASNetMobile 5.33M 4,844M 9.11%±0.0003

InceptionV3 23.85M 17,237M 9.64%±0.0003

ResNet50 25.61M 23,045M 10.02%±0.0004
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Fig. 12: Distribution of execution time from 100,000 runs on
ShuffleV (bs=4) compared with Secure Ibex (DII=16) on MAC
and AES-128 workloads.

variation in model size and computational complexity, the
results indicate that ShuffleV maintains a consistently low
execution time overhead, ranging from 9.11% to 13.15%
across all evaluated architectures. This highlights ShuffleV’s
effectiveness in securing diverse and complex DNN workloads
with minimal performance impact.

Unfortunately, it is not possible to compare the performance
overhead of neural network workloads, due to the lack of
prior related works on countermeasures against EM SCAs on
neural networks at the software or microarchitecture level, with
the exception of [49], which also did not report performance
numbers. We hope that the performance number presented in
Fig. 10 and Tab. III could serve as a baseline for other future
works on developing countermeasures against EM SCAs on
the neural network workload.

Execution Time Variation. While ShuffleV’s nondeter-
ministic execution can introduce execution time variation due
to shuffle buffer exhaustion and checkpoint restoring, the
results in Tab. III demonstrate that this variation is negligible
for large program segments. Furthermore, for shorter programs
such as AES-128 and 5i5w MAC operations (from Sec. III-C),
Fig. 12 clearly illustrates a substantial reduction in execu-
tion time variation compared to Secure Ibex. These results
demonstrate ShuffleV’s suitability for embedded and real-
time systems that require predictable run-time behavior. Our
instruction shuffling technique offers a distinct advantage over
pure dummy instruction insertion, as it dynamically reorders
actual program instructions rather than randomly inserting
superfluous ones. This approach more efficiently utilizes the
processor, leading to reduced execution time overhead and



TABLE IV: FPGA resource utilization of ShuffleV compared
to the Ibex [15] and Secure Ibex [15] core. BRAM utilization
is 128 in all configurations. (“SV” = “ShuffleV”, “bs” = “buffer
size” and “di” = “dummy instruction insertion interval”)

Configuration LUT as logic LUTRAM FF

Ibex [15] 6547 96 5890
Secure Ibex [15] 6704 (+2.40%) 96 5961 (+1.21%)

SV (bs=2) 7432 (+13.5%) 140 6601 (+12.1%)
SV-MJB (bs=2) 8726 (+33.3%) 140 6896 (+17.1%)

SV-F (bs=2) 7463 (+14.0%) 140 6604 (+12.1%)
SV-FMJB (bs=2) 8599 (+31.3%) 140 6897 (+17.1%)

SV-F (bs=2, di=16) 7598 (+16.1%) 140 6695 (+13.7%)

SV (bs=4) 8032 (+22.7%) 140 6910 (+17.3%)
SV-MJB (bs=4) 8888 (+35.8%) 140 7215 (+22.5%)

SV-F (bs=4) 8079 (+23.4%) 140 6915 (+17.4%)
SV-FMJB (bs=4) 8834 (+34.9%) 140 7218 (+22.6%)

SV-F (bs=4, di=16) 8054 (+23.0%) 140 7011 (+19.0%)

SV (bs=8) 8370 (+27.8%) 140 7552 (+28.2%)
SV-MJB (bs=8) 9829 (+50.1%) 140 7879 (+33.8%)

SV-F (bs=8) 8333 (+27.3%) 140 7560 (+28.4%)
SV-FMJB (bs=8) 9705 (+48.2%) 140 7886 (+33.9%)

SV-F (bs=8, di=16) 8586 (+31.1%) 140 7655 (+30.0%)

improved consistency in execution time.

B. Hardware Resources and Timing

To evaluate ShuffleV hardware resource utilization, power
consumption and side channel security, we developed ShuffleV
Demo SoC5 based on the Ibex demo system [40], a simple SoC
design that combines the Ibex core with some basic peripheral
to support device programming, debugging, and interfacing
with external devices. Tab. IV compares resource utilization
of notable configurations of ShuffleV Demo SoC against the
Ibex Demo SoC. Both SoCs contain the same set of peripherals
, differing only in their CPU core. The BRAM utilization is
constant across all configurations as it depends solely on the
size of the program memory. In all configurations, ShuffleV
runs at the same speed as the baseline Ibex core [15] at 50
MHz. It’s important to note that the percentage increase in
resource utilization is relative to the overall SoC size. For
example, Appendix E reveals that the ShuffleV core constitutes
only roughly half of the SoC’s resources. Therefore, in real-
world SoCs with more extensive peripherals and integrated
memory, the core will occupy a much smaller proportion of
the total area, making its area increase less significant overall.

C. Power Consumption

We assess the effect of our design on power consumption
by measuring the average power and energy consumption
of a single neural network inference and AES encryption
operation. Fig. 13 shows the distribution of the power, energy
per inference/encryption, and execution time obtained from
30 runs. In terms of power, both SecureIbex and ShuffleV
consume less average power than the unsecure Ibex. In the
case of ShuffleV, the reason is due to the additional stall
cycles introduced by the shuffling logic, which reduce the

5Available at https://github.com/nuntipat/ShuffleV-Demo-System.
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ShuffleV-F (bs=4, DII=16) (SV-F(4, 16))

average power. Similarly, Secure Ibex inserts a random number
of dummy instructions that take different cycles to execute,
resulting in lower average power consumption, e.g., a DIV
instruction stalls the fetch and decode stages by up to 37 cycles
but increases the energy consumption significantly (see Fig.3
and Fig. 13).

In terms of energy consumption on the neural network work-
load, the Secure Ibex (Ibex(16)) consumes the highest energy,
followed by ShuffleV with dummy (SV-F(4,16)), ShuffleV
(SV-F(4)), and the Ibex (4.681mJ vs 3.962mJ vs 3.694mJ
vs 3.242mJ). A similar trend can be observed on the AES
workload, where the Secure Ibex consumes 14.53mJ, followed
by SV-F(4,16) at 11.016mJ, SV-F(4) at 10.242mJ, and Ibex at
8.769mJ. In addition to its lower average energy consumption,
ShuffleV achieves a significantly lower variation in energy
consumption due to lower execution time variations.

D. Security Evaluation

We test the side-channel resistance of ShuffleV from three
perspectives: 1) Overall program shuffle; and 2) Critical op-
eration shuffle; and 3) Resistance against correlation electro-
magnetic analysis attack (CEMA) using 1M traces.

Overall Program Shuffle. We present the number of ready
instructions (in %) in each processor cycle in Fig. 14. The
number of ready instructions is defined as the number of
instructions that can be selected for execution in each clock
cycle, which can range from 1 to N (shuffle buffer’s size).
The higher number of ready instructions implies higher overall
randomness. When executing the neural network workload
without applying any optimization (i.e., the vanilla ShuffleV),
28.66% of cycle has 1 ready instruction and 8.45% of cycle
has 4 ready instruction, respectively. After enabling the M, J,
and B options (Sec. V-A), the percentage of cycles that have
with only 1 ready instruction decreases to 7.69%, while the
percentage of cycles with 4 ready instructions increases to
28.01%. These experimental results demonstrate the effective-
ness of our optimization strategies in Sec. V-A in improving



Fig. 14: Proportion of number of ready instructions in each
processor cycle while executing the ensemble model on TFLite
Micro (top) and AES-128 encryption (bottom) on different
configurations of ShuffleV. Results for other configuration are
provided in Fig. 22-23 in Appendix C.
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Fig. 15: Percent of total cycles with L consecutive cycles with
1 ready instruction while executing the ensemble model on
TFLite Micro. Note that the sum of all bars in each plot is
equal to the leftmost bar of the corresponding plot in Fig. 14.

overall randomness. Similar results are observed in the AES
workload (Fig. 14 (bottom)).

To further validate the overall randomness, we propose
the length of consecutive cycle with 1 ready instruction (L)
as another metric to measure how long the core executes
instruction without any shuffling. Fig. 15 shows that it is
extremely rare for the core to execute without shuffling when
performing neural network inference (L>5 cycles for <1%
and L>7 cycles for <0.1% of the total cycle). This experiment
shows that while ShuffleV may at time be unable to shuffle
instructions due to true data dependency (Read-After-Write),
a long sequence of non-shuffleable instructions is rare in
practice, due to the nature of RISC ISA that requires additional
instructions to load/store data from memory, increment the
pointer address, etc. These instructions can be reordered to cre-
ate run-time variation, even though the computation exhibits
RAW dependency.

Critical Operation Shuffle. We measure the amount of
shuffling for critical instructions, i.e., these directly process
secret values. To demonstrates how the overall randomness of
the execution weaken the capability of attackers, we define the
multiply-accumulate (MAC) operation of the neural network
inference, as well as the load/store operation between the S-
box and the state array as the critical operation. Using the
shuffle buffer size equal to 4 and 8, Fig. 16 illustrates that
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Fig. 16: The amount of shuffling (in cycles) of the critical
instructions in neural network inference (left) and AES-128
encryption (right) on different configurations of ShuffleV.

the amount of shift for critical operations is approximately -
13 to +19 cycles on the neural network workload, and -18 to
+14 cycles on the AES-128 workload, depend on the ShuffleV
configuration and the overall program duration. These results
demonstrate that, although ShuffleV targets randomizing the
overall program, it also affects the critical operations and can
help adverse the ability of attack to conduct a successful attack.

Resistance against CEMA. We validate the performance
of ShuffleV by conducting CEMA attack on the multiply-
accumulate (MAC) operation and the SubBytes operation in
the first round of AES-128 encryption. The measurements are
conducted on the PYNQ-Z2 FPGA board running the ShuffleV
Demo SoC at 50MHz. We follow the experimental setup in
Sec. III-B. Tab. V shows the CEMA results on the AES-128
encryption. From our experiment, the vanilla ShuffleV (SV-F4)
with 3.1% performance overhead can protect approximately
12 out of 16 key bytes (Appendix. A Fig. 17). The number of
traces required to perform the attack and the index of a byte
in the key that can be successfully attacked change between
subsequent runs, which proves that ShuffleV execution is
random. Note that even though several key bytes may leak in
each run, it is still difficult for attackers to combine results
from multiple runs to get the correct key as they do not
know which byte is corrected. When considering ShuffleV
with dummy instructions, the performance overhead is 31.2%
and all except the first byte of the key can be successfully
protected (Appendix. A Fig. 19). This is due to the limited
shuffling space between the first byte and the trigger signal.
Note that in this experiment, we assume a very strong attacker
who can place the trigger signal precisely at the beginning of
the encryption process, which is not feasible in practice. Thus,
the actual attack success rate will be much lower.

We show the CEMA results on the MAC in Tab. VI. When
considering ShuffleV with a buffer size of 4 (i.e., SV-F (4)),
the performance overhead is 13.7%, and all weights from the
fifth weight onwards can be successfully protected. The first
weight can only be attacked in conjunction with an attack on
weights 1 and 2. Attacking weights 2-4 yields five candidates
with equal correlation values, resulting in a 20 percent success
rate (Appendix. A Fig. 18). Again, the reason that weights
1–4 can be attacked is due to their close proximity to the
trigger signal, and the success rate in reality will be lower.



TABLE V: Results of performing a CEMA against AES-128 on unprotected Ibex [15], Secure Ibex [15], ShuffleV-F with
buffer size = 4 (SV-F (4)) and ShuffleV-F with buffer size = 4 and dummy interval = 16 (SV-F (4,16)). The percentage after
the configuration name indicates the overhead compared to the Ibex core. ✗ indicates an unsuccessful attack at 1M traces.

Config
Byte# 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

Ibex 300 300 400 150 400 200 100 100 150 250 250 250 1050 100 450 450
Secure Ibex (61.5%) 80k 51k 93k 31k 53k 43k 18k 10k 10k 13k 13k 10k 12k 3k 14k 1k
SV-F (4) (3.1%) (1st run) 235k ✗ 385k ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 170k 340k 310k ✗
SV-F (4) (3.1%) (2nd run) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 710k ✗ ✗ ✗ 360k ✗ 100k 530k
SV-F (4,16) (31.2%) 660k ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TABLE VI: Results of performing a CEMA against MAC op-
eration on unprotected Ibex [15], Secure Ibex [15], ShuffleV-
F (buffer size = 4) and ShuffleV-F (buffer size = 4, dummy
interval = 16). The percentage after the configuration name
indicates the overhead compared to the Ibex core. ✗ indicates
an unsuccessful attack at 1M traces. *1The attack was per-
formed on weights 1-2 simultaneously. *2The attack yields five
candidates with equal correlation (20% success rate).

Config
Weight# 1 2 3 4 5

Ibex 270 170 300 150 670
Secure Ibex (37.5%) 37k*1 37k 10k 14k 36k
SV-F (4) (13.7%) 130k*1,2 130k*2 45k*2 100k*2 ✗
SV-F (4,16) (41.8%) ✗ ✗ ✗ ✗ ✗

For better defense, we test ShuffleV with dummy instruction
enabled (i.g., SV-F (4, 16)), which has a performance overhead
of 41.8% and could protect all weights (Appendix. A Fig.
20). Given that real-world neural networks have much more
than 5 weights, the results show that both configurations can
successfully protect neural network execution, and the choice
of which configuration to use depends on the requirement and
acceptable performance loss.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations and potential
misconceptions of ShuffleV, proposing mitigation strategies
and directions for future work.

Compiler optimization: A modern compiler may re-
order instructions to maximize performance for target micro-
architectures, e.g., the load instruction may be placed apart
from the instructions that require the loaded value to prevent
pipeline stall. In some cases, ShuffleV may unintentionally
void this optimization, resulting in performance loss. Further
studies could be conducted to enhance the compatibility be-
tween ShuffleV and compiler optimizations.

Deterministic execution for embedded system: Many
embedded and real-time systems require predictable run-time
behavior, i.e., low variation between runs. ShuffleV improve
upon SecureIbex significantly in this regard, as shown in Fig.
12 and 13 (right) by avoiding using long-running instructions,
e.g., DIV as a dummy, and by adopting several strategies to
prevent shuffle buffer stalls (see Sec. IV-C). If more control is
needed, ShuffleV allows developers to disable the protection

through the Control and Status Registers when handling inter-
rupts or performing time-critical operations (see Sec. V-C).

ShuffleV vs other side-channel attacks: Although our
threat model focuses on single-tenant embedded systems,
which are not susceptible to software-based attacks like Spec-
tre, we anticipate that ShuffleV’s non-deterministic execution
and memory access pattern could extend its security benefits
to mitigate timing and cache-based side-channel attacks. Ap-
plying ShuffleV to desktop-class processors to validate this
potential is a key direction for future research.

ShuffleV vs Out-of-Order core: ShuffleV and traditional
out-of-order and super-scalar cores are fundamentally differ-
ent, since ShuffleV reorders instructions randomly, whereas
traditional out-of-order cores reorder instructions determinis-
tically, i.e., they shuffle instructions in the same way across
multiple runs, making them still vulnerable to CEMA attacks.

VIII. CONCLUSION

This paper introduces ShuffleV, a microarchitectural defense
strategy against EM side-channel attacks (SCAs) in micro-
processors. Employing the moving target defense (MTD) phi-
losophy, ShuffleV mitigates EM SCAs by randomly shuffling
program instruction execution order and inserting dummy in-
structions. Unlike application-specific countermeasures, Shuf-
fleV offers automatic protection without algorithm modifi-
cation or software recompilation. To accommodate diverse
design needs, ShuffleV provides various configurations en-
abling trade-offs between performance overhead and security.
We developed an ShuffleV simulator for rapid evaluation of
different configurations, allowing users to analyze execution
traces of any RISC-V binary. We implemented ShuffleV on
the open-source Ibex RISC-V core, enabling its use as a
drop-in replacement in existing SoC designs. Furthermore,
we developed an ShuffleV Demo SoC and implemented it
on a Xilinx XUP PYNQ-Z2 FPGA board to assess hardware
resource footprint, performance, power consumption, and EM
SCA resistance. Experimental results demonstrate ShuffleV’s
successful protection of neural network model confidentiality
and AES encryption keys with low overhead in performance,
energy, and hardware resources.
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APPENDIX A
CEMA ATTACK RESULTS

Fig. 17: Result of performing a CEMA against AES on the ShuffleV-F core (buffer size = 4). Blue dashed lines indicate the
number of traces required for the successful attack. Otherwise, the attack is unsuccessful at 1M traces.
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Fig. 18: Result of performing a CEMA against 5i5w MAC on the ShuffleV-F core (buffer size = 4). Blue dashed lines indicate
the number of traces required for the successful attack. Otherwise, the attack is unsuccessful at 1M traces.



Fig. 19: Result of performing a CEMA against AES on the ShuffleV-F core (buffer size = 4, dummy interval = 16). Blue
dashed lines indicate the number of traces required for the successful attack. Otherwise, the attack is unsuccessful at 1M traces.
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Fig. 20: Result of performing a CEMA against 5i5w MAC on the ShuffleV-F core (buffer size = 4, dummy interval = 16).



APPENDIX B
PERFORMANCE OVERHEAD
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Fig. 21: Performance overhead of different configuration of ShuffleV on the CoreMark benchmark (left), neural network
inference on TensorFlow Lite Micro (middle) and AES-128 encryption (right) with shuffle buffer size = 8

APPENDIX C
SHUFFABLITY METRICES FOR ALL CONFIGURATIONS
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Fig. 22: Proportion of CPU cycle with 1 - 4 ready instruction while executing the ensemble model on TFLite Micro
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Fig. 23: Proportion of CPU cycle with 1 - 4 ready instruction while executing the AES-128 encryption
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Fig. 24: Percent of total cycles with L consecutive cycles with 1 ready instruction while executing the ensemble model on
TFLite Micro. Note that the sum of all bars in each plot is equal to the leftmost bar of the corresponding plot in Fig. 22.
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Fig. 25: Percent of total cycles with L consecutive cycles with 1 ready instruction while executing the AES-128 encryption.
Note that the sum of all bars in each plot is equal to the leftmost bar of the corresponding plot in Fig. 23.



APPENDIX D
ENSEMBLE MODEL ARCHITECTURE

____________________________________________________________________________
 Layer (type)                                 Output Shape         Param # 
============================================================================
 conv2d (Conv2D)                           (None, 30, 30, 5)         140
                                                                
 batch_normalization (BatchNormalization)  (None, 30, 30, 5)         20
                                                                        
 separable_conv2d (SeparableConv2D)        (None, 28, 28, 5)         75
                                                                          
 average_pooling2d (AveragePooling2D)      (None, 14, 14, 5)         0
                                                                         
 separable_conv2d_1 (SeparableConv2D)      (None, 10, 10, 1)         131
                                                                         
 max_pooling2d (MaxPooling2D)              (None, 5, 5, 1)           0
                                                                         
 flatten (Flatten)                         (None, 25)                0
                                                                 
 dense (Dense)                             (None, 5)                 130
                                                                 
============================================================================
Total params: 496
Trainable params: 486
Non-trainable params: 10
____________________________________________________________________________Fig. 26: Architecture of the ensemble model used in our performance analysis.

APPENDIX E
FPGA RESOURCE UTILIZATION

TABLE VII: FPGA resource utilization of ShuffleV compared to other RISC-V cores. *1The Xilinx Zynq XC7020 FPGA
combines an Arm Cortex-A9 processor with Artix-7 based programmable logic thus resource utilization from both FPGA
devices should be comparable. *2The BOOM result is assumed to be based on BOOMv1 [50]. *3The OPA and BOOM results
are approximated from the figure presented in [44].

Core ISA Type FPGA Device*1 LUTs Registers Reference

PicoRV32 RV32IM In-order Xilinx Artix XC7A35T 1,765 1,075 [51]
Ibex RV32IMC In-order Xilinx Zynq XC7Z020 3,161 1,933 -
ShuffleV (bs=4) RV32IMC Out-of-order (Nondeterministic) Xilinx Zynq XC7Z020 4,411 2,993 -
RI5CY RV32IMC In-order Xilinx Artix XC7A35T 6,748 2,577 [51]
RSD RV32IM Out-of-order Xilinx Zynq XC7Z020 15,379 8,584 [44]
OPA*3 RV32IM Out-of-order Xilinx Zynq XC7Z020 20,500 9,800 [44]
BOOM*2*3 RV32IMAC Out-of-order Xilinx Zynq XC7Z020 43,600 21,500 [44]


