ALLI/O Diagram: An Action-based Visual
Programming Language for Embedded System

Nuntipat Narkthong*, Chattriya Jariyavajee’, Xiaolin Xu*
*Northeastern University, Boston, USA TKing Mongkut’s University of Technology Thonburi, Bangkok, Thailand
{narkthong.n, x.xu} @northeastern.edu chattriya.jar@mail.kmutt.ac.th

Abstract—This paper introduces ALLI/O Diagram, an action-
based visual programming language for embedded system pro-
gramming used by the ALLY/O IDE. We illustrate the practicality
of ALLI/O Diagram with various design examples and evaluate
it against block-based, event-based, device-based, and state-
based programming approaches in terms of programming effort,
readability, and portability of the result programs. These results
demonstrate that our proposed ALLI/O Diagram is the most
compact, expressive, and portable across different hardware
models. We open source the ALLI/O Diagram and all example
programs at https://allio.build,

Index Terms—Embedded System, Microcontrollers, Visual
Programming Language

I. INTRODUCTION

The emerging platforms like Arduino [[1] for makers and
hobbyists, Mbed [2]] for professional development, and graph-
ical programming tools such as MakeCode [3] for the educa-
tional segment have significantly promoted the proliferation
of embedded systems development. In terms of hardware,
these platforms provide developers with a ready-to-use mi-
crocontroller (MCU) board that includes all essential circuitry
needed to prototype their ideas. From a software development
perspective, these platforms offer a collection of libraries that
abstract away the intricate details of the hardware, which
enables developers to program the MCU and all integrated
peripherals with high-level functions, diminishing the learning
curve and facilitating code portability across various MCUs.

One common characteristic of these platforms is that they
are built on an imperative programming concept. However,
most existing embedded systems are predominantly reactive
systems, i.e., they must respond to multiple real-world events
concurrently [4]]. Although several programming techniques
have been adopted to support concurrency in imperative lan-
guages, there still are many challenges. For example, the
super loop pattern, although simple and efficient, can lead to
spaghetti code due to the excessive use of flag variables, which
is difficult to read and maintain. To address these problems,
a finite state machine (FSM) or a statechart [5]] can be used
to systematically manage execution states. However, imple-
menting the diagram in code requires the developer to write
a significant amount of boilerplate code and manually main-
tain synchronization whenever the design changes. For more
complex scenarios, the real-time operating system (RTOS) [2],
[6]-[10] can be adopted alongside the state machine or super
loop to enable real multitasking. However, it introduces steep
learning curves and high resource utilization.

Alternatively, different programming strategies have been
explored over the last few decades to enhance productivity and
reduce the learning curve of embedded system programming.
Some notable initiatives are classified as follows:

1) Block-based programming is the predominant method
employed by educational tools. Straightforward imple-
mentations [[11]-[[14] replace each line of code with
a graphical block and provide a ready-to-use block
to program hardware devices, allowing inexperienced
programmers to write code without memorizing the
syntax. Nevertheless, they inherit all the shortcomings
of imperative languages and may suffer in terms of read-
ability for complex programs due to the huge view-port
needed to display all blocks. More advanced implemen-
tations [3]], [15]-[17]] integrate some form of scheduler
to facilitate event-based and concurrent execution, which
helps reduce boilerplate code and improve readability
for complex programs at the cost of higher resource
utilization.

2) Device-based/Dataflow programming [18], [19] allows
programmers to route values from input to output de-
vices through some transformation nodes. Implementing
systems with static behavior, such as displaying sensor
values on a display or activating an actuator when sensor
values exceed a certain threshold, requires minimal
work. However, complex behaviors, e.g., multiple modes
of operation, require building logic with flip-flops and
gates, which present challenges to software developers.

3) Trigger-action programming [20]], [21] allows develop-
ers to specify actions in response to events. Due to its
simplicity and limited syntax, its use is currently limited
to end-user programming tools, e.g., for connecting
multiple IoT devices for home automation purposes.

4) State-based programming [22]—[24]] uses a state diagram
or statechart to describe the design and automatically
converts it to code, avoiding error-prone and time-
consuming manual implementation. However, most tools
require developers to put code in the diagram instead
of using natural language, which impacts the diagram’s
readability and portability.

Taking into account these design challenges and limits
of the existing solutions, we believe a new programming
approach that combines the strengths of existing programming
methodologies is needed to improve productivity and reduce

https://allio.build

the complexity of embedded system programming for both
novice and professional developers. To that end, this paper
introduces ALLI/O (pronounced as All-I-O) Diagram, a new
programming approach for embedded systems that provides
the following capabilities:

1) Portable multi-purpose syntax. ALLI/O Diagram uses
high-level portable syntax that is human-readable and
decouples from hardware-specific implementation detail
while still being formal enough to support automatic
code generation (see Sec[lT-A).

2) State-alike control-flow. Instead of executing from top to
bottom and relying on control-flow statements such as if-
else, for, and while, ALLI/O Diagram allows transition
to any part of the program and describes concurrent
behavior with multiple diagrams similar to the statechart
(see Sec[lI-BJ).

3) Imperative way of thinking. Unlike traditional state di-
agrams, an ALLI/O Diagram consists of a sequence of
actions that modify the state of the output device and
transitions that connect and trigger actions based on
internal and external stimuli, hence the named action-
based approach. Additionally, ALLI/O Diagram ad-
dresses the weakness of state-based programming in
terms of program size by supporting variables, loops,
and subroutines, a convenient concept from imperative

programming languages (see SecllI-B3| |LI-C2).

II. DESIGN OVERVIEW

In this section, we introduce ALLI/O device abstraction,
which is a portable syntax used to interface with hardware
devices in ALLI/O Diagram. Then, we describe each diagram
component and the overall syntax of ALLI/O Diagram using
several program examples.

A. ALLI/O Device Abstraction

ALLI/O introduces the concept of Generic Devicdl} to
represent a type of real-world device, such as an LED, a push
button, a temperature sensor, etc. Each program may contain
multiple Generic Devices of the same type, each identified by
a unique instance name (e.g. LED1 and LED2 in Fig. .
Each Generic Device consists of

1) Action represents a task that an output device can
perform. For example, an LED can be turned on or off,
a display can show some texts, a servo can move, etc.
An action may require some parameters. For instance,
the LED “On” action requires the brightness value and
the servo “Move To” action requires the degree value.

2) Condition (highlighted in) refers to the state of
an input device that can be represented as true or false,
e.g., button press, button release, accelerometer free fall,
etc.

3) Value (highlighted in purple) represents the quantity that
can be measured by the input device, e.g., acceleration,
temperature, relative humidity, light intensity, etc.

'A complete list of Generic Devices are available at https:/allio.build

(Back_to) Command
Begin

’ (light on } [blink] button press .

Fig. 1. The basic building block of an ALLI/O diagram.

Subdiagram Transition End

Device's Condition

Name
LED1 LED2 ;

Action: On } Parameters Buttond). () AND

Human — Light On
Readable
Description

Action Name

Param1: 100%

Generic Device)
Instance Name

name and Lightl .Intensity < 50
value

Param2: ...
MotorA

Action: Off Device's Value

Name

Fig. 2. Anatomy of the Command block and Transition

ALLI/O Diagram is portable across different MCUs and
input/output devices as its behavior is defined based on
the Generic Device. During code generation, each physical
hardware device is mapped to one or more Generic Device
depending on compatibility and user preferences. For instance,
the Bosch BME280 sensor can measure both temperature and
humidity, thus it can be mapped with two Generic Devices
in the diagram. The algorithms for device mapping and code
generation are left as future work.

B. ALLI/O Diagram Design

1) Diagram Component: ALLI/O diagram is a graph
that begins with a Begin block followed by a Command,
Subdiagram, or Transition and ends with a Back to
Begin or an End block. Fig. [T] shows the design of all
ALLI/O Diagram components.

Begin block indicate the beginning of a diagram. The
Back to Begin block can be used to resume execution
at the corresponding Begin block. Otherwise, the End block
can be used to execute the diagram only once.

Command block is used to perform one or more actions,
such as turning on a motor or displaying some text on the
display. Each Command block contains a Generic Device
instance name, along with the name of the Action and all
parameters to set to the device. Each Action can be applied
to multiple devices, and multiple Action/device pairs are
supported in one Command block, e.g. in Fig. LED1 and
LED2 will be turned on and MotoraA will be turned off.

Subdiagram block enables modularity and improves read-
ability by allowing parts of the diagram to be reused and/or
hidden while displaying the diagram (see Fig. [3).

Transition connects the output port of the source com-
ponent (right-hand side) to the input port of the destination
component (left-hand side) to form a graph. It is represented
as a line with one boolean expression composed of one or more
Conditions and/or comparison expressions joined by an AND
or OR operator. A comparison expression is formed by joining
two numerical expressions, each consisting of a number literal
and Generic Device’s Value name, with a comparison operator,
e.g., Lightl .Intensity < 50 or Templ .Temperature
> Temp2 .Temperature + 10 AND Btnl .

https://allio.build

Overview Mode (Fully Collapse)

Button P Button P Button P
' Light: Off |-o2ONPreSS 1) ioht: Auto im0 PTES | ight: on | oocon Press ‘

Detail Mode (Fully Expand)

Light: Auto
Light1 .Intensity Time .SincelLastBlock
. <30 LED1 >10
Light: Off Action: On ‘
— Btn1 0 Brightness: 100%
’ Action: Off ’ N
Time .SinceLastBlock
LED1 >10 ‘
Otherwise Action: Off

Fig. 3. A diagram describing the automatic nightlight system with three
modes of operation: off, auto, and on, in two visualization modes. Only the
region under the gray box is shown in detail mode due to space constraints.

2) Diagram Visualization: One common drawback of
graphical programming languages is their inability to han-
dle large designs due to the large viewport area required
to visualize the program. To address this problem, ALLI/O
Diagram lets users specify a human-readable description for all
Command, Subdiagram, and Transition blocks, which
will be used to render the diagram at different levels of detail,
as shown in Fig. @ In addition, the Subdiagram block can
be collapsed to hide the implementation detail, allowing the
developer to easily see the overall design in limited space.

3) Diagram Syntax: ALLI/O Diagram execution begins at a
Begin block and proceeds from the source component to the
destination component when there is no boolean expression
associated with the Transition or when the expression is
true. Note that the output port is always on the right, and the
input port is always on the left. Several Transitions in
the same level of the graph infer a branch, i.e., the execution
follows the path of Transition that evaluates to true first.
Backward connection infers a while loop, i.e., the execution
repeats until the Transition evaluates to false. When none
of the Transitions in the same level evaluate to true, the
execution blocks until one of the Transition is true.

Concurrency. ALLI/O Diagram supports concurrency by
allowing multiple top-level diagrams to be defined using
multiple Begin blocks. All diagrams may refer to the same
set of devices, but they must not be connected (see. Fig. [B}{f).

Subdiagram. The Subdiagram contains one or more
inner diagrams that are executed concurrently, and it can be
nested. A Subdiagram is interruptable if it has one or more
outward Transitions with a boolean expression. When
any outward Transition is true, the Subdiagram exits,
causing all inner diagrams to stop immediately, and execution
resumes at the next block in the upper-level diagram. On the
other hand, a noninterruptable Subdiagram will only exit
when all inner diagrams reach their End block. For example,
if the button in Fig. [3|is pressed during “Light: Auto” being
executed, the diagram will transition to the “Light: On” block
immediately. On the other hand, in Fig. [5] the “Wiper: On”
block will always execute until completion as there is no
boolean expression on the outward Transition.

Loop. One weakness of traditional state-based diagrams

X3 X Random.Value

Some Task

LED1
Action: On
Brightness: 0-100% (5s, linear)

cond1 cond1

cond2 cond2

7Seg

’ Action: Show Number ‘
Text: Loop .round

Buzzerl
Action: Play Tone
Frequency: [261,293,329]Hz (0.5s)

Fig. 4. A diagram syntax for repetition and animation.

is the lack of equivalent syntax to for-loop in imperative
programming languages, unlike while-loop, which can be
easily implemented with a backward connection. The common
workaround is to unroll and create a state for each iteration of
the loop, which is tedious and impacts readability. To address
this problem, ALLI/O Diagram introduces additional syntax
to support two common use cases of a for-loop: repetition and
animation.

Fig. shows a syntax to support repetition by specify-
ing the number of rounds on top of the Subdiagram block,
which helps define the region of the repetition. When the
Back to Begin or End block is encountered inside the
Subdiagram, the loop counter increases, and the execution
starts again at the beginning of the Subdiagram. When
condl or cond? is true, the loop exits immediately in the
same way as a normal Subdiagram. This semantic main-
tains compatibility with normal Subdiagram and enables
breaking from the loop, similar to an imperative programming
language.

Animating a value is also another common use case of for-
loop, e.g., dimming the light or displaying a counter on the
screen. ALLI/O Diagram supports this use case by allowing
the value to be specified as start - end in t seconds with

an optional easing curve (see Fig. [(top-right)). Alternatively,

a sequence of values can be provided to change the value
discretely over time (Fig. i (bottom-right)). Note that the
diagram’s execution doesn’t halt to wait for the value to
update completely. Instead, the value will continue to update
concurrently in the background. This semantic avoids blocking
and allows interrupting the update by setting another Action
to the device in another subsequent Command block.

Modularity/Parameterization. ALLI/O Diagram supports
code reuse by allowing a Subdiagram to be reused in
multiple places in the diagram where the same behavior is
needed. For example, Fig. [5]shows how the “Wiper: On” block
can be reused to wipe the front and/or rear windshield every
2 seconds when the corresponding switch is on.

When the same behavior needs to be applied to different sets
of devices, e.g., different motor and limit switches are used for
the front and rear wipers, ALLI/O allows the Subdiagram
to be parameterized and reused by specifying the device to be
used every time that it is referenced. Fig.[5]and Fig. [7)illustrate
our parameterized syntax, which places the device name on
top of the Subdiagram block. Inside the Subdiagram,
placeholders are used, which will be mapped to the device
name based on their defined order.

FrontBtn M1 SW1 sw2 Wait RearBtn M2 SW3 swa Wait

b e JE O L [4

Wiper: On M1 SW1 SW2

Motor Stop

Action: On
Direction: CCW
Power: 100%

Fig. 5. A diagram describing front and rear car windshield wipers that wipe
every 2 seconds when the corresponding switch is turned on.

C. Design Example

1) Automatic night light: Fig. [3] illustrates a complete
ALLI/O Diagram to implement an automatic night light
system with three mode of operation: off, auto and on. In
this example, the execution begins at the Begin block and
continues immediately to the “Light: Off” block to turn the
light off. After the button (Btn1l) is pressed for the first time,
the execution enters the “Light: Auto” block to turn LED1 on
or off, depending on the intensity value read from the light
sensor (Light1l). The Otherwise keyword can be used to
indicate a diagram path to take when all other Transitions
are false, similar to the else clause in the if-else statement in
most programming languages. After the LED1 is turned on
or off, the program waits for 10 seconds before moving on
to the Back to Begin block, which causes the execution
to resume at the latest Begin block. The loop continues
indefinitely until the button is pressed for the second time,
which causes the Subdiagram to exit and proceed to the
“Light: On” block immediately. When the button is pressed
for the third time, the diagram advances to the Back to
Begin block and resumes at the beginning. This process
repeats indefinitely.

2) Sport score board: A traditional state-based diagram
requires a huge number of states to perform counting and/or
memorizing values, as separate states are needed to represent
each valid value. Fig. [6] demonstrates our simpler approach
to implementing a score board with two buttons to increment
scores for red and blue teams using two top-level diagrams and
the Memory Generic Device, which offer similar functionality
to a global variable in the imperative programming language.
An value can be memorized with the Action “Set” and can be
referred to in the diagram as a Value (e.g., ScoreR .Value)
that can be used as an Action’s parameters or in a Transition
in the same way as a Value from an external sensor.

3) Car Windshield Wiper: Fig.[] shows a diagram describ-
ing front and rear car windshield wipers with three modes of
operation: single wipe, auto wipe (every 2 seconds), and spray
and wipe. Btnl - Btn3 represent switches in the car wiper
stalk. Each wiper is modeled with 1 motor and 2 limit switch
at the start and end position (see Fig. [8). The operation of the
wiper is described in the “Wiper: On” block shown in Fig. [3}
It works by rotating until it hits the limit switch at the end
position. Then, it will rotate back in the opposite direction

N
Reset Btn

Press ‘

A s
Red Btn | ScoreR
Press

-
ScoreR Action: Set Action: Set

’ Value: 0 Value: Score_R .Value +1

7SegR Action: Show Number Action: Show Number

Text: ScoreR .Value Text: ScoreR .value
. J . J/

7SegR

Red Btn Press

N
Reset Btn

Press ‘

A e
Blue Btn | ScoreB
Press

-
ScoreB Action: Set Action: Set
’ Value: 0 Value: Score_B .value +1
7SegB Action: Show Number Action: Show Number
L Text: ScoreB .value) L Text: ScoreB .Value)

7SegB

Blue Btn Press
Fig. 6. A diagram describing a sport scoreboard with red and blue teams.

M1 SwW1i sw2
0
Wiper: On ‘ Btn2.

Spray: On Pumpil

Btnil. M1 SW1 SW2)
Time .SincelLastBlock

0 >2.

M1 Sw1i sw2

X2
| o o

Pump On

Btn3. 0

Fig. 7. A diagram describing front and rear car windshield wipers with three
modes of operation: single wipe, auto wipe (every 2 seconds), and spray and
wipe. Another identical diagram for the rear wiper is omitted for brevity.

until it hits the limit switch at the start position and stop. This
example demonstrates how to implement a branch, a loop, and
a parameterized subroutine with ALLI/O Diagram.

III. EVALUATIONS

In this section, we compare ALLI/O Diagram, our action-
based approach, with the most mature tools from each existing
approach, including Ardublockly (imperative block pro-
gramming), MakeCode (event-based block programming
with task scheduler), XOD (device-based/dataflow pro-
gramming), and SinelaboreRT (state-based programming)
in terms of programming effort, readability, and portability of
the resulting program. We chose the single-mode front and
rear car windshield wiper example in Fig. [5] as a case study
because the resulting program is both small enough to fit in
a limited space and complicated enough to show how each
platform supports complex programs.

A. Programming Effort

Fig. 5] shows how to implement the following system in
ALLI/O Diagram by simply using two top-level diagrams to
describe each wiper and the parameterized syntax to reuse
the Subdiagram between the front and rear wipers. Fig.
B_(a) shows the same program implemented in MakeCode
with another forever block for the rear wiper omitted due
to space constraints. Note how MakeCode allows multiple
forever blocks to run concurrently, which enables developers
to write simpler blocking code (e.g., loops to poll an input
button and pause by 2 seconds) to implement this system.
In contrast, ArduBlockly (Fig. [87(c)), a similar block-based
platform, requires the developer to manually implement a
state machine with lots of if-else statements to keep track of
the program’s state, as the execution thread can’t be blocked

(a) (b)
*

forever

©)

Arduino run first:
RearBtn

TopLevel

Digital Pin #3

4 fsm1_state ~ KGN O |

=v°

motor 1 v on direction forward v speed @UH []

- O

if digital read pin PO v then

<<Region>>
Frontwiper

while digital read pin P1 v

d
o pause (ms) QU4

figtalReas(0)

motor 1 v on direction reverse v speed @4

o)

FrontForward

o
while digital read pin P2 v mzxon_:wom

‘Gigtaread(1)

FrontReverse
Do
motor1_ccw(100),

digitaRead(2)

o [N 10 ~

millis() >
front_end_watr
turn off motor 1 v front_end_watms

LRGN 2000 v

(C)

Frontwait2sec

Do
front_end_watms = mills() + 2000;
motort _off(X

Frontidle
Do:
motort_off(),

IdigitaRead(0)

<<Region>>
ReaWiper

set to (1 elapsed Time

Arduino loop forever:

(e) if [fsm1_state - J|L=~ I 0]
do (&) if | read digital pin# (ED
do [set (FIIEETED to

—

—
else if

Digital Pin #0
FrontBtn

Ve

Lfsm1_state - [~ -
do .mc;tor1_fonnard

G fsm1_state - RENE{2)
else if . (=~ N 2]
do (3] if | read digital pin# KD
do | m6t0r1_backward

wms
2# uid [eudia

~—
else if

fsm1_state ~ 'm B

(d)

@
2
=
o
2
B
>

T# ud [e3big

do @ if | read digital pin#
do | motor1_off
- fsm1_state ~ RGN 4 |
o | 1
~ fsmi_time - L) [elapsed Time 2000

—
~—

@) if |

else

" 1 .
fsmi_time > Ji{ >~ [ERCELECRRIINE
do [set (TR to |
=

h-bridge-de-motor

Fig. 8. Example of programs for controlling front and rear car windshield wipers on four programming platforms: (a) MakeCode, (b) SinelaboreRT, (c)
Ardublockly, and (d) XOD. Only part of the program for controlling the front wiper is shown due to space constraints.

to poll a button or to wait for a specific amount of time.
On the other hand, SinelaboreRT (Fig. [B_(b)) enables the
developer to easily implement the same state machine logic
using the statechart with code in some text-based programming
languages, such as C++. Lastly, XOD (Fig. 8 (d)) requires the
most effort in this case due to the need to design complex
logic with the logic gate and flipflop components to manage
the program state.

In summary, ALLI/O, MakeCode, and SinelaboreRT require
the least effort to implement the aforementioned example,
followed by Ardublockly due to its verbosity and XOD due
to the use of logic unfamiliar to most software developers.

B. Readability

ALLI/O is the most readable due to its compact size and the
use of human-readable Action, Condition and Value defined in
the Generic Device to describe the diagram. While the Sinela-
boreRT uses state-based logic similar to ALLI/O Diagram, it
directly puts code in the diagram, which makes the diagram
large, and the reader might not be able to understand the
behavior of the system without knowing the definition of each
function (e.g. motor_xxx ()). Block-based programming
provides high-level block (e.g., motor 1 on direction

. in Fig. 8_(@)), which is user-friendly. However, it suffers
when the program is more complex, e.g., in the ArduBlockly
example (Fig. 8 (c)), due to the large viewport area needed
to visualize the diagram. XOD is the least readable, as the

complex logic may not be self-explanatory without a detailed
explanation. More importantly, some crucial information, such
as the initial value of a component (e.g., a flip-flop’s output),
is hidden from the diagram rendering.

C. Portability

ALLI/O Diagram is the only fully portable programming
method, as it decouples all device-specific information (e.g.,
connection port, library used, etc.) from the diagram to the
code generation phase. On the other hand, MakeCode, Ar-
dublockly, and XOD programs are mostly portable across dif-
ferent MCU boards but not across different peripheral devices,
as different devices (e.g., motor drivers) may need different
blocks and interface codes. The SinelaboreRT diagram is
portable across hardware devices, but the implementation of
the code referred to in the diagram (e.g., motorl_off ())
may not be portable and may need to be reimplemented by
the developer before performing code generation.

IV. CONCLUSION AND FUTURE WORKS

This paper introduces the design of the ALLI/O Diagram,
provides several diagram examples and compares it against
other embedded system programming approaches. Our fu-
ture work will investigate techniques to generate code from
ALLI/O Diagram in terms of code size, latency, and power
consumption on diverse MCU platforms.

ACKNOWLEDGMENT

The authors would like to thank Ingarage Assistive Tech-
nology Co., Ltd. for funding, as well as Sara Rhujitawi-
wat, Chaiwat Limpornchitwilai, Koetkao Sriratanaban, and
Surapont Toomnark for their support and feedback on the early
prototype of this work. This work was partially done while the
first author was at King Mongkut’s University of Technology
Thonburi, Thailand.

[1]

[2]

[3

=

[4

=

[5

[ty

[6

=

[7

—

[8

=

[9

—

[10]

[11]
(12]

[13

[14]

[15]
[16]
[17]
[18]

[19]
[20]

REFERENCES

M. Banzi and M. Shiloh, Make: Getting Started with Arduino The Open
Source Electronics Prototyping Platform, 3rd ed. Sebastopol, CA, USA:
Maker Media, Inc, 2014.

Arm Limited. (2009) Free open source iot os and development
tools from arm — mbed. Arm Limited. [Online]. Available:
https://os.mbed.com

J. Devine, J. Finney, P. de Halleux, M. Moskal, T. Ball,
and S. Hodges, “Makecode and codal: intuitive and
efficient embedded systems programming for education (Ictes

version),” in Proceedings of the 19th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools
for Embedded Systems. ACM, June 2018, pp. 19-30. [Online].
Available: https://www.microsoft.com/en-us/research/publication/

[21]

[22]
(23]

[24]

B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard,
D. Schulze, and M. L. Littman, “Trigger-action programming in
the wild: An analysis of 200,000 ifttt recipes,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 3227-3231. [Online]. Available:
https://doi.org/10.1145/2858036.2858556.

P. Mueller, “Sinelabore rt user manual,” SinelaboreRT, 2015.

Quantum Leaps, LLC. (2016) Qm model-based design tool. Quantum

Leaps, LLC. [Online]. Available: https://www.state-machine.com/|
products/qm:
itemis Inc. (2022) itemis create — state machine tool - lowcode

development. itemis Inc. [Online]. Available: https://www.itemis.com/
en/products/itemis-create/

makecode- and-codal-intuitive-and-etficient-embedded- systems- programming- for-education/

D. Harel and A. Pnueli, On the development of reactive systems. Berlin,
Heidelberg: Springer-Verlag, 1989, p. 477-498.

D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231-274, 1987.
[Online]. Available: |https://www.sciencedirect.com/science/article/pii/
0167642387900359

Richard Barry. (2003) Freertos - market leading rtos (real time operating
system) for embedded systems with internet of things extensions.
Amazon Web Services. [Online]. Available: https://www.freertos.org
G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka,
and N. Tsiftes, “The contiki-ng open source operating system for
next generation iot devices,” SoftwareX, vol. 18, p. 101089, 2022.
[Online]. Available: |https://www.sciencedirect.com/science/article/pii/
$2352711022000620

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, TinyOS:
An Operating System for Sensor Networks. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 115-148. [Online]. Available:
https://doi.org/10.1007/3-540-27139-2_7

E. Baccelli, O. Hahm, M. Giines, M. Wibhlisch, and T. C. Schmidt, “Riot
os: Towards an os for the internet of things,” in 2013 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2013,
pp. 79-80.

Zephyr Project. (2016) The zephyr project — a proven rtos ecosystem,
by developers, for developers. Zephyr Project. [Online]. Available:
https://www.zephyrproject.org/

carlosperate. (2015) Ardublockly - embedded log. carlosperate. [Online].
Available: https://ardublockly.embeddedlog.com

Sébastien Canet. (2020) Blocklyduino. [Online]. Available: https:
//github.com/BlocklyDuino/BlocklyDuino-v2

Michael Nixon. (2016) Code kit. EduKits International Pty Ltd.
[Online]. Available: https://edukits.co/code-kit-app/

Keyestudio. (2021) Mixly—a superior graphical programming tool.
Keyestudio. [Online]. Available: https://www.keyestudio.com/pages/
mixly-a-superior- graphical-programming- tool

KittenBot. (2016) Kittenblock. KittenBot. [Online]. Available: https:
//kblock.kittenbot.cc

Makeblock. (2014) mblock block-based ide - coding for beginners.
Makeblock. [Online]. Available: https://ide.mblock.cc

ArtronShop. (2020) microblock ide. ArtronShop. [Online]. Available:
https://ide.microblock.app:

Mitov Software. (2023) Visuino - visual development for arduino.
Mitov Software. [Online]. Available: |https://www.visuino.com

XOD Inc. (2017) Xod. XOD Inc. [Online]. Available: https://xod.io
IFTTT Inc. (2011) Ifttt - automate business & home. IFTTT Inc.
[Online]. Available: https://ifttt.com

https://os.mbed.com
https://www.microsoft.com/en-us/research/publication/makecode-and-codal-intuitive-and-efficient-embedded-systems-programming-for-education/
https://www.microsoft.com/en-us/research/publication/makecode-and-codal-intuitive-and-efficient-embedded-systems-programming-for-education/
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://www.freertos.org
https://www.sciencedirect.com/science/article/pii/S2352711022000620
https://www.sciencedirect.com/science/article/pii/S2352711022000620
https://doi.org/10.1007/3-540-27139-2_7
https://www.zephyrproject.org/
https://ardublockly.embeddedlog.com
https://github.com/BlocklyDuino/BlocklyDuino-v2
https://github.com/BlocklyDuino/BlocklyDuino-v2
https://edukits.co/code-kit-app/
https://www.keyestudio.com/pages/mixly-a-superior-graphical-programming-tool
https://www.keyestudio.com/pages/mixly-a-superior-graphical-programming-tool
https://kblock.kittenbot.cc
https://kblock.kittenbot.cc
https://ide.mblock.cc
https://ide.microblock.app
https://www.visuino.com
https://xod.io
https://ifttt.com
https://doi.org/10.1145/2858036.2858556
https://www.state-machine.com/products/qm
https://www.state-machine.com/products/qm
https://www.itemis.com/en/products/itemis-create/
https://www.itemis.com/en/products/itemis-create/

	Introduction
	Design Overview
	ALLI/O Device Abstraction
	ALLI/O Diagram Design
	Diagram Component
	Diagram Visualization
	Diagram Syntax

	Design Example
	Automatic night light
	Sport score board
	Car Windshield Wiper

	Evaluations
	Programming Effort
	Readability
	Portability

	Conclusion and Future Works
	References

